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LETlXR TO THE EDITOR 

On the susceptibility of the generalised square lattice 
king model 

H Giacomini 
Laboratoire de Magnitisme des Surfaces, UniversitC Paris 7, 2 Place Jussieu, 75251 Paris 
Cidex 05, France 

Received 11 April 1989 

Abstract. An exact functional relation is found for the susceptibility of the generalised 
square lattice king model. This result contains, as a particular case, a Fisher relation 
between the susceptibilities of the triangular and honeycomb lattices models. It is also 
shown that the closed-form expression for the susceptibility of the generalised square 
lattice, proposed by Syozi and Naya, satisfies the functional relation presented in this letter. 

The zero-field magnetic susceptibility of the two-dimensional Ising model is not known, 
in explicit form, for any of the four regular lattices (square, triangular, honeycomb 
and KagomC). For the anisotropic model, some special results have been obtained. 
Explicit expressions for the triangular lattice with multispin interactions and for the 
generalised square lattice, have been calculated on the disorder variety (Enting 1977, 
Dhar and Maillard 1985). On these varieties a dimensional reduction occurs and the 
model trivialises. Very recently (Debauche and Giacomini 1989) an explicit expression 
for the susceptibility of the anisotropic KagomC lattice has been obtained when a 
relation between the three interactions parameters of the model is satisfied. 

Also, in the critical region of the square lattice model, a great amount of information 
for the singular behaviour of the susceptibility has been obtained in recent years (for 
recent works and references to previous papers see Kong et a1 (1986) and Gartenhaus 
and McCullough (1988)). 

With the aim of cumulating a set of exact results that could lead to its complete 
explicit determination, we present in this letter an exact functional relation for the 
susceptibility of the generalised square lattice (GSL) (or checkerboard lattice). This 
lattice contains the square, triangular and honeycomb lattices as particular cases. Let 
us now describe the procedure for obtaining this result. 

Recently, Baxter (1986) has derived an exact functional relation for the partition 
function of the GSL Ising model with zero magnetic field. From this relation he has 
obtained expressions for the partition function and local correlations in terms of those 
of the regular square lattice Ising model. This functional relation can be generalised 
to the case where a magnetic field is present in one of the two sublattices of the GSL. 

From this result, as will be shown in the following, a functional relation for the 
susceptibility of the GSL can be derived. 
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Consider a square lattice L of 2 N  sites and periodic boundary conditions. Divide 
the edges into four classes 1,. . . , 4  as indicated in figure 1, and associate interaction 
coefficients J 1 , .  . . , J4 with the classes. With each site i associate a spin ai, with values 
+1 and -1. Let L’ and L” be the two sublattices of L, denoted by open and filled 
circles, respectively, in figure 1. With each site of sublattice L associate a magnetic 
field h. Then the partition function of this model is 

where the inner sums are over all edges (ij) of L and all sites of L’, respectively, r is 
the class of edge (ij), and the outer sum is over all values of a = {a,, . . . , aZN}. Here 
K ,  = J , / k B T  and H = h / k B T ,  where k ,  is the Boltzmann constant and T the tem- 
perature. To obtain a functional relation for the partition function (1) we follow Baxter 
(1986). Let us sum over the N spins on sublattice L”. Then (1) becomes 

where the product is over all N faces of the lattice L‘ of broken lines in figure 1; i, j ,  
k,  1 are the four sites around each such face, arranged as in figure 1. The sum is over 
the N spins on L‘ and 

(3) W(a, b, c, d )  = 2 cosh(K,a + Kzb+ K3c+ K,d) exp{(H/4)(a + b +  c + d ) } .  

Let us consider now the star-star relation (Baxter 1986) 

2cosh(K1a+K2b+K3c+K4d)  

=2R cosh(L,a+ L3b+ L,c+ Lld)  exp{M(bc-ad)} (4) 

which is valid for all values f 1 of the four spins a, b, c, d, if the parameters L1, . . . , L4, 

k 

Figure 1. The generalised square lattice L (all circles), showing the sublattices L’ (open 
circles) and L” (filled circles). The four types of interactions 1 ,  . . . , 4  are also indicated. 
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M and R satisfy the following equations: 

sinh(2Li) sinh(2Ki) = R i = l , .  . . , 4  ( 5 a )  

cosh(21,) = cosh(2K2) cosh(2P) - coth(2Kl) sinh(2K2) sinh(2P) 

cosh(2L2) = cosh(2K1) cosh(2P) - coth(2K2) sinh(2Kl) sinh(2P) 

cosh(2L3) = cosh(2K4) cosh(2P)+coth(2K3) sinh(2K4) sinh(2P) 

cosh(2L4) = cosh(2K3) cosh(2P)+coth(2K4) sinh(2K3) sinh(2P) 

(5b) 

with 

sinh(2Ki) 1’4 ‘=cl (sinh(2Li)) 

sinh(2K2) sinh(2K3) - sinh(2Kl) sinh(2K4) 
tanh(2M) = 

cosh(2K2) cosh(2K3) + cosh(2Kl) cosh(2K4) 

sinh(2K,) sinh(2K2) -sinh(2K3) sinh(2KJ 
cosh(2K1) cosh(2K2) + cosh(2K3) cosh(2K4) 

tanh(2P) = 

(5f) 
sinh(2K,) cosh(Kf+KT+K,*+ K,*+2Kr R 2 =  J-J 

i = l  sinh(2K:) cosh(KI+K2+K3+K4-2Ki)  

and 

exp( -2K 7 )  = tanh( Ki). 

Now, we can replace the factor 2 cosh( Kla  +. . . + K4d) in (3) by the right-hand side 
of (4). But the factor exp[M(bc - ad)] is cancelled when the product of the Boltzmann 
weights W ( a ,  b, c, d )  is performed over all faces of L’. Therefore, taking into account 
(2), we have the following functional relation for the partition function ( 1 ) :  

Z ( H ,  Kl, K2, K3, K4) = R N Z ( H ,  L4, L3, L2, Ll) ( 6 )  
with Li and R given by equations ( 5 ) .  Equation (6) is valid for arbitrary values of 
magnetic field H and, as has been shown above, the relations between parameters Li 
and Ki are independent of H. Therefore, the following result can be established for 
the zero-field susceptibility of sublattice L’: 

(7) XbL”(K1, K2, K3, K4)=xbL’)(L4, L3, L2, L,) 
where 

As has been shown by Fisher (1959), a relation can be established between the 
susceptibility of a sublattice L’ of a bipartite lattice L and the total susceptibility xo 
of L. In our case, this relation is as follows: 

XbL’)(Ki,K,,K3,K4)=a[Xo(Ki, K29K3, K~)+xo(-KI,-K~,-K~,-K~)I. (9) 
By using (7) and (9), we finally obtain the desired functional relation for the total 
susceptibility ,yo : 
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where parameters Li are given in terms of Ki by means of equations ( 5 ) .  As can be 
easily seen from these equations, the transformation T that leads from parameters K i  
to parameters Li is involutive, that is to say T2 = I, where I is the identity transformation. 

For the special case of the anisotropic square lattice (K, = K3 and K2 = K4), 
transformation T trivialises, and we have L4, L3, Lz, L, = K3, K4, K1, K 2 .  Equation 
(10) represents for this case a simple geometrical symmetry of the model. 

The parameter R2, given in (Sf), is the relevant (temperature-like) variable of the 
model. Varying K, ,  . . . , K4, while keeping R2 fixed, does not affect the phase of the 
system: if it is ordered (disordered) for one such physical set of values of K,, . . . , K4, 
then it is ordered (disordered) for all. For R2> 1 the system is ordered, for R2< 1 it 
is disordered and R2 = 1 determines the critical variety of the model. As can be easily 
seen from equations (sa) ,  (5f) and (5g ) ,  R2 is invariant under the transformation T 
and under the reversal of the sign of the four interactions Ki ; that is to say 

a’( K1, . . . , K4) a’( L4, . . . , L,) = R2( - K, , . . . , - K4). (11) 
Then, the four terms of equation (10) have the same value of R2. 

Let us consider the special case K4 = +W. The GSL Ising model is equivalent, in 
this limit, to the anisotropic triangular Ising model with N sites and interaction 
coefficients K, ,  K 2 ,  K 3  . Moreover, the resulting magnetic field on the triangular lattice 
is twice the field of the GSL. Therefore, we have the following relation between the 
susceptibilities of the GSL and triangular lattice models: 

XOGSL(KI, K2, K3, K ~ = + ~ ) = ~ X ~ T R I A N G ( K ~ ,  K2, K3). (12) 
In the left-hand side of (10) we have also, in this limit, the term 
X o ( -  K1, - K2, - K3, - K4 = -00). When K4 = -a, spins connected by this interaction 
must be opposed. This leads to a cancellation of the magnetic field, when it acts on 
all sites of the lattice (as is the case for calculating the total susceptibility X o ) .  Therefore 
we have, in particular, 

X o G S L ( - K I ,  -Kz, -K3, -K,=-00)=0. (13) 
On the other hand, when K4= +a, it can be deduced from equations ( 5 )  that (Baxter 
and Choy 1988) 

L4=0  

sinh(2Ki) sinh(2Li) = R i = 1,2,3 (14a) 
cosh(2Li) = cosh(2Kj) cosh(2Kk) +coth(2Ki) sinh(2Kj) sinh(2Kk) 

for all permutations ( i , j ,  k) of (1,2,3), with 

and ui =tanh(Ki), i = 1,2,3. 
For this particular case, the parameters L,, L2, L3 are obtained from K,, K z ,  K, 

by means of the well known star-triangle relation, defined by equations (14). The GSL 
Ising model with interaction coefficients L4 = 0, L3, L2, L1, and 2 N  sites is equivalent 
to the anisotropic honeycomb lattice Ising model with interaction parameters L,, L2, 
L,, and 2 N  sites. Therefore we have 

XOGSL(L4=0, L3, L2, Ll)=XOHONEY(L1, LZ, L3)- (15) 
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In consequence, for the particular case K4 = +CO, relation (10) becomes 

XOTRIANG(K1, K2, K3) 

= h O H O N E Y  ( L l ,  LZ, L3)+XOHONEY(-L1, - L 2 ,  - L 3 ) )  (16) 

i.e. the well known relation between the susceptibilities of the triangular and honeycomb 
lattices models derived by Fisher (1959). 

Let us return now to the general case. The susceptibility of the GSL model also 
satisfies the so-called inversion relation: 

Xo(K1, K2, K3, K4)+XO(KI+iT/2, -K2, K3+iT/2, -K4) (17) 

where the second term must be considered as the analytical continuation of the first 
term (for a review of the inversion relation, see Maillard (1985)). From equation (17), 
geometrical symmetries of the model and the disorder solution, severe constraints are 
obtained on the resummed temperature expansions. However, these constraints are 
not sufficient to completely determine xo. The functional relation (10) presented in 
this letter represents a new piece of exact information to be imposed to resummed 
temperature expansions. It would be interesting to study the constraints imposed by 
this relation. 

It is worth pointing out that using symmetry properties of the Ising model (star- 
triangle relation, duality transformation, geometrical symmetries), the one-dimensional 
limits and the anisotropic high-temperature expansions, Syozi and Naya (1960) pro- 
posed a closed expression for the susceptibility of the GSL given by 

where Si = sinh(2Ki), Ci = cosh(2Ki) with i = 1,. . . ,4. 
This closed (approximated) expression is singular on the critical variety of the 

model and has actually the correct critical exponent y = i .  Moreover, this expression 
satisfies the inversion relation (17) and reduces to the result of Dhar and Maillard 
(1985) on the disorder variety (Hansel and Maillard 1987). It can be proved from 
equations (5) that (18) satisfies the functional relation (10). Hence this remarkable 
expression for ,yo satisfies all known exact results, in spite of the fact that it is not 
exact. It would be interesting to find the lattice model for which (18) is the exact 
susceptibility, and to compare it with the usual Ising model. 

Finally, let us remark that from relation (6) with H = 0, Baxter (1986) has obtained 
several interesting results for the GSL Ising model. Can some of these results be 
generalised to the case of non-zero field studied in this letter? 

I wish to thank J M Maillard for useful discussions. The author is supported by 
Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina). 
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